Telegram Group & Telegram Channel
🚀 Как ускорить Python-код для ресурсоёмких задач

При работе с большими объёмами данных Python может «тормозить», особенно при обработке сотен тысяч строк или обучении сложных ML-моделей.

🎯 Ниже — два приёма, которые позволят ускорить обучение и загрузку данных в десятки раз.

1️⃣ Используйте GPU с включённым memory growth

По умолчанию TensorFlow может попытаться занять всю память видеокарты, что приводит к ошибке OOM. Решение — включить «постепенное» выделение памяти:
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)


2️⃣ Оптимизируйте загрузку данных с `tf.data`

Загрузка Excel-файла — типичное узкое место (Disk I/O). Использование tf.data.Dataset с prefetch позволяет загружать и обрабатывать данные асинхронно.

Пример:
dataset = tf.data.Dataset.from_generator(
data_generator,
output_signature={col: tf.TensorSpec(shape=(), dtype=tf.float32) for col in data.columns}
).shuffle(1000).batch(32).prefetch(tf.data.AUTOTUNE)


📎 Вывод:
GPU и tf.data с правильной настройкой дают мощный прирост производительности. Особенно важно при работе с крупными ML-пайплайнами и в продакшене.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6445
Create:
Last Update:

🚀 Как ускорить Python-код для ресурсоёмких задач

При работе с большими объёмами данных Python может «тормозить», особенно при обработке сотен тысяч строк или обучении сложных ML-моделей.

🎯 Ниже — два приёма, которые позволят ускорить обучение и загрузку данных в десятки раз.

1️⃣ Используйте GPU с включённым memory growth

По умолчанию TensorFlow может попытаться занять всю память видеокарты, что приводит к ошибке OOM. Решение — включить «постепенное» выделение памяти:

gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)


2️⃣ Оптимизируйте загрузку данных с `tf.data`

Загрузка Excel-файла — типичное узкое место (Disk I/O). Использование tf.data.Dataset с prefetch позволяет загружать и обрабатывать данные асинхронно.

Пример:
dataset = tf.data.Dataset.from_generator(
data_generator,
output_signature={col: tf.TensorSpec(shape=(), dtype=tf.float32) for col in data.columns}
).shuffle(1000).batch(32).prefetch(tf.data.AUTOTUNE)


📎 Вывод:
GPU и tf.data с правильной настройкой дают мощный прирост производительности. Особенно важно при работе с крупными ML-пайплайнами и в продакшене.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6445

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from jp


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA